Technical Trends

Four New Players Join 3D NAND Market

Micron & Intel's 3D NAND Die PhotoThe following is excerpted from an Objective Analysis Alert sent to our clients on March 26: On March 25 SanDisk and Toshiba announced sampling of their 3D NAND flash technology, a 128Gb (gigabit) 48-layer second-generation product based on the BiCS technology that the companies pioneered in 2007.  Pilot production will begin in the second half of 2015 with meaningful production targeted for 2016. This release was issued at the same time that Intel and Micron were briefing the press and analysts for their March 26 announcement of their own 3D NAND offering (pictured), which is currently sampling with select customers, and is to enter full production by year-end.  The Micron-Intel chip is a 32-layer 256Gb device, which the companies proudly point out is the densest flash chip in the industry.

Similarities and Differences

These two joint ventures (Intel-Micron and SanDisk-Toshiba) are taking very different Continue reading

What’s This Nano-Imprint Litho that Toshiba and SK hynix are Co-Developing?

BackToZero Sealing WaxLast week Toshiba and SK hynix announced an agreement to jointly develop Nano Imprint Lithography (NIL), building on a memorandum of understanding (MOU) that two companies signed in December last year.  Development efforts will begin this April and practical adoption is expected to start in 2017.  The collaboration is expected to reduce risk and accelerate commercialization of this technology.

NIL is expected to produce next-generation lithography at high throughput rates more economically than established lithography tools.  It is should compete against Extreme Ultraviolet (EUV) lithography, an alternative technology whose use has been delayed by numerous technical challenges.  EUV, a euphemism for X-Rays, cannot use transmissive optics like glass lenses, so a completely new reflective imaging technology has had to be developed to support its use.  The advantage of EUV is that the light wavelength is only 13nm, which is an order of magnitude smaller than the 193nm light currently used to produce leading-edge chips, allowing it to print significantly smaller features.

Unlike today’s lithography, which uses a purely photographic process, NIL mechanically stamps a pattern into the photoresist in a similar manner to the sealing wax stamp shown in the photo (courtesy of BackToZero, a wax stamp maker).  The stamp is produced using Continue reading

Finally! Samsung’s 3-Bit V-NAND Arrives

3-bit V-NANDSamsung has finally introduced the 3-bit 3D NAND chip it revealed at last August’s Flash Memory Summit.  This announcement was made in the form of an SSD announcement.

For those who were unable to attend the Flash Memory Summit, Samsung’s Senior VP of Memory R&D, Bob Brennan, announced in his keynote speech that a 3D 32-layer V-NAND, a chip that would achieve twice the chip density of planar NAND, was entering production and that SSDs would follow in a month.  Now, two months later, Samsung has announced those SSDs.

This week’s release reiterates Continue reading

New Book: Vertical 3D Memory Technologies

Book: Vertical 3D Memory Technologies - Betty PrinceWiley has recently published a new book by Betty Prince titled Vertical 3D NAND Technologies that is one to consider if you want to bring yourself up to speed on recent research behind today’s and tomorrow’s 3D memory technologies.

For those who haven’t previously encountered Dr. Prince, she is the author of a number of key books covering memory design and holds memory patents written over her 30-year career in the field.

The book provides capsule summaries of over 360 papers and articles from scholarly journals on the subject of 3D memories, including DRAM, NAND flash, and stacked chips.

These papers are organized into Continue reading

SanDisk’s Amazing 512GB SD Card

SanDisk's 512GB SD CardSanDisk has introduced an SD Card with a whopping 512 gigabytes of storage.  Noting that SD Card capacities have increased by 1,000 times over the past ten years, from 512MB to 512GB, the company says that this product is aimed at professional HD videographers (who can justify its $800 price) allowing them to shoot Raw-format footage without shutting their cameras off, which could potentially allow them to miss a magic moment.

To The Memory Guy this represents an amazing piece of packaging technology.  Let’s see why:

In 2003 SanDisk’s 512MB card contained Continue reading

Intel to Use Micron Hybrid Memory Cube

Micron: "Bursting Through The Memory Wall"Intel and Micron today announced that the new version of Intel’s Xeon Phi, a highly parallel coprocessor for research applications, will be built using a custom version of Micron’s Hybrid Memory Cube, or HMC.

This is only the second announced application for this new memory product – the first was a Fujitsu supercomputer back in November.

For those who, like me, were unfamiliar with the Xeon Phi, it’s a module that uses high core-count processors for problems that can be solved with high degrees of parallelism.  My friend and processor guru Nathan Brookwood tells me Continue reading

Making 3D NAND Flash – Animated Video

The good people at Coventor have graciously allowed me to post their video of the Pipe-Shaped BiCS 3D NAND flash process onto The Memory Guy blog site.  Click the image to see it play out.

Coventor tells me that they are the leading Continue reading

Samsung Begins Operations at its Xi’an Fab

Samsung's Xi'an, China fabSamsung has announced that the company’s newest memory fabrication plant (Fab) in Xi’an, China has “begun full-scale production operations”, adding that: “The new facility will manufacture Samsung’s advanced NAND flash memory chips: 3D V-NAND.”

I immediately asked whether the plant will build products other than 3D NAND, and the company has replied that this will be the only product produced in the Xi’an plant.  What Samsung has not said is what is meant by “full-scale production operations.”  Typically wafer fabs start with a very low production capacity as new tools are being qualified, only ramping to high-volume production a year or more after initial production.

Samsung points out that production has begun a mere 20 months after initial groundbreaking, which is quite Continue reading

Comparing Samsung V-NAND to Micron 16nm Planar NAND

Andrew Walker, SchiltronI was recently directed to a very interesting blog post written by 3D technologist Andrew Walker of Schiltron in which he compares two NAND flash chips that were presented at the IEEE International Solid State Circuits Conference (ISSCC) on February 12.

The post, titled Samsung’s V-NAND Flash at the 2014 ISSCC: Ye Distant Spires… is on the 3D InCites website.

Dr. Walker puts a lot more time and effort into his graphic representations of 3D NAND chips than do others (The Memory Guy included) and this makes it much easier to understand the issues he points out.  He shows us that Samsung’s 3D NAND cell is about 5 times the size of a 40nm planar NAND cell and about 30 times that of Micron’s 16nm planar cell, and that the 3D NAND’s physical area is unlikely to change with any future 3D technology generations.

For this and other reasons (given in the article) he states that the Samsung V-NAND is “an impressive achievement but not a realistic foundation for the future.”

After having compiled my series on 3D NAND I can appreciate Dr. Walker’s opinion.  This is certainly going to be a difficult technology to master, and it could be quite some time before the cost structure for 3D NAND can compete against that of today’s planar technologies.

Give the Walker post a quick read and judge for yourself whether we are at the brink of a 3D conversion or if this technology can be expected to slip out a few years.

Why NAND is So Difficult to Scale

ASML chart chowing the lithography used for 4X, 3X, 2X, and 1Xnm planar NAND and 3D NANDNAND flash is the process leader in memory technology, and this puts it in a very challenging position: It must ramp to high volume production using techniques that have never been tried before.

The graphic for this post (click to enlarge), supplied by ASML, the semiconductor industry’s leading lithography tool supplier, illustrates the challenge of migrating from one process node to the next.  Across the bottom, on the X-axis, are representative process nodes ranging from “2D-45″, or two-dimensional (planar) 45nm NAND, to “3D-5x”, or three-dimensional 5xnm NAND.  Below these numbers are the year of volume production.

The vertical axis, labeled “Tolerance” represents the minimum Continue reading

Contact

Jim Handy Objective Analysis Memory Market Research +1 (408) 356-2549 Jim.Handy (at) Objective-Analysis.com

Translate to:

Translation Services GTS Translation