Technical Trends

Examining 3D XPoint’s 1,000 Times Endurance Benefit

3D XPoint Endurance GraphicThe Memory Guy, as a regular reader of The SSD Guy’s posts, found an interesting one that compares the endurance of Optane SSDs against that of NAND flash SSDs.  Perhaps this could provide some insight into the Intel & Micron claim that 3D XPoint Memory’s endurance is 1,000 times that of standard NAND flash, shown in the graphic to the left.

The SSD Guy post converts several different measures of SSD endurance against each other: TBW, DWPD, and GB/Day.  Definitions of these terms can be found in that post.

It occurred to me that any of these can be used to roughly gauge the relative endurance of 3D XPoint Memory against that of NAND flash.

Take DWPD for example: Drive Writes per Day.  Not only is this a measure of how many times that an SSD can be over-written every day, but it’s also an indication of the number of times that each memory cell can be overwritten.  If you know this, and if you know how long Continue reading

64-Layer 3D NAND Chips Revealed at ISSCC

Toshiba-WD 64-Layer 3D NAND at ISSCC17This week both the Toshiba-Western Digital team and Samsung disclosed details of their 64-layer 3D NAND designs at the IEEE’s International Solid-State Circuits Conference (ISSCC)The Memory Guy thought that it would be interesting to compare these two companies’ 64-layer chips against each other and against the one that Micron presented at last year’s ISSCC.

Allow me to point out that it’s no easy feat to get to 64 layers.  Not only must the process build all 64 layers (or actually pairs of layers plus some additional ones for control) across the entire 300mm wafer with high uniformity and no defects, but then holes must be etched through varying materials from the top to the bottom with absolutely parallel sides at aspect ratios of about 60:1, that is, the hole is 60 times as deep as it is wide.  After this the fab must deposit uniform layers of material onto the sides of these skinny holes without any variation in thickness.

None of these processes have ever been used to build any other semiconductor — it’s all brand new.  This is what makes 3D NAND so challenging, and it’s why the technology is already 3 years behind its original schedule.

It’s not easy to tell from the conference papers whether or not Continue reading

Memsys: A New Memory Conference

1999 White HouseSince I am the Memory Guy I hate learning that I missed something new and cool in the world of memories, but somehow I was unaware of last week’s Memsys conference in Washington DC until a participant notified me on Saturday that his paper: “Reverse Engineering of DRAMs: Row Hammer with Crosshair,” had been given the the best paper award.

Upon looking at the Memsys website it looks like a very intriguing academic conference.  about sixty papers were presented in eight interesting sessions:

  • Issues in High Performance Computing
  • Nonvolatile Main Memories and DRAM Caches, Parts I & II
  • Hybrid Memory Cube and Alternative DRAM Channels
  • Thinking Outside the Box
  • Improving the DRAM Device Architecture
  • Issues and Interconnects for 2.5D and 3D Packaging
  • Some Amazingly Cool Physical Experiments

in addition to a few apparently-fascinating keynotes.

Fortunately, all of the papers are Continue reading

Samsung Power Glitch – Is It Important?

3D NANDOn Saturday, June 18, Samsung’s Xian fab, the only facility in the world currently producing 3D NAND flash, suffered a power failure.  How much of a problem is this?

The answer really depends upon who you ask.  An article in the Financial Express quoted Samsung as saying that it would have a minimal impact, and that full-scale operations should resume in a few days.  The article also said that Samsung estimated that the wafer loss would be below 10,000 wafers.

Assuming that the entire loss consisted of Samsung’s most advanced 48-layer 256Gb 3D NAND a 10,000-wafer loss would be less than 1% of total industry gigabyte shipments.

Korea Times quoted an anonymous fund manager who said: “The one-time incident will cost Samsung up to 20 billion won, which is very minimal.  It won’t make heavy impact on Samsung’s chip business and the entire industry.”

According to Korean news source Chosenilbo the outage was caused by Continue reading

Toshiba Restructuring: New 3D Fab Coming

Toshiba Yokkaichi Fab ComplexBeleaguered Toshiba finally unveiled its restructuring plan on Friday.  The plan aims to return the company to profitability and growth through management accountability.

A lot of the presentation focused on the memory business, a shining star of the Toshiba conglomerate, which has so far included appliances, nuclear power plants, and medical electronics.

Toshiba has big plans for its Semiconductor & Storage Products Company, calling it “A pillar of income with Memories as a core business”.  The company plans to enhance its NAND flash cost competitiveness by accelerating development of BiCS (Toshiba’s 3D NAND technology) and by expanding its SSD business.   There are three parts to this effort:

  1. Grow 3D NAND production capacity
  2. Speed up 3D NAND development
  3. Increase SSD development resources

This post’s graphic is an Continue reading

A 1T SRAM? Sounds Too Good to be True!

Zeno 1T SRAMAt the IEEE’s International Electron Device Meeting (IEDM) in December a start-up named Zeno Semiconductors introduced a 1-transistor (1T) SRAM.  Given that today’s SRAMs generally use between six and eight transistors per bit, this alternative promises to squeeze the same amount of SRAM into a space 1/6th to 1/8th the size of current SRAM designs, leading to significant cost savings.

The device is really a single standard NMOS transistor that behaves as if it were two bipolar transistors connected into something like a flip-flop, although the transistors’ bases are open, rather than cross-coupled to the opposite transistors’ collector, as is done in a standard flip-flop.

The cell is selected by activating the gate, and the bit is set or sensed via the source and drain to provide a differential signal.

This is a decidedly clever departure from standard SRAM configurations, and it reflects a careful observation of the actual Continue reading

Samsung’s Colossal 128GB DIMM

Samsung_128GB TSV RDIMMIn a November 25 press release Samsung introduced a 128GB DDR4 DIMM.  This is eight times the density of the largest broadly-available DIMM and rivals the full capacity of mainstream SSDs.

Naturally, the first question is: “How do they do that?”

To get all the chips into the DIMM format Samsung uses TSV interconnects on the DRAMs.  The module’s 36 DRAM packages each contain four 8Gb (1GB) chips, resulting in 144 DRAM chips squeezed into a standard DIMM format.  Each package also includes a data buffer chip, making the stack very closely resemble either the High-Bandwidth Memory (HBM) or the Hybrid Memory Cube (HMC).

Since these 36 packages (or worse, 144 DRAM chips) would overload the processor’s address bus, the DIMM uses an RDIMM protocol – the address and control pins are buffered on the DIMM before they reach the DRAM chips, cutting the processor bus loading by an order of magnitude or more.  RDIMMs are supported by certain server platforms.

The Memory Guy asked Samsung whether Continue reading

New Materials Solve Key 3D NAND Issue

imec III-V 3D NAND channelAt the IEEE’s IEDM conference last week Belgian research consortium imec showed an improved “gate first” 3D NAND that replaced the conventional polysilicon channel with InGaAs, Indium Gallium Arsenide, a III-V material.  This new technique opens the door to higher layer counts in 3D NAND, allowing denser parts to be made in support of further cost reductions.

For those unfamiliar with the term, the “gate first” approach is the foundation of Toshiba’s BiCS NAND, and presumably Micron’s floating gate 3D NAND.

imec explains that “Replacing poly-Si as a channel material is necessary, as it is not suitable for long-term scaling.”  Further they report that on-state current (ION) and transconductance (gm) of the III-V channel was better than that of polysilicon devices, without any programming, erase, or endurance degradation.  The device’s characteristics are shown in this post’s graphic.

The consortium reports that the current through the Continue reading

Flash Memory Summit: Limitless Layers of 3D NAND

SanDisk Technology Roadmap 2014The single most interesting thing I learned at the 2015 Flash Memory Summit was that 3D NAND doesn’t have a natural limit, after which some other memory type will need to be adopted.

For years SanDisk has been presenting a memory roadmap (this post’s graphic is one rendition) that anticipates a move to ReRAM after 3D NAND has run through its natural life, which was expected to be as little as three generations.  This has been backed by the idea that a 3D NAND stack would only be able to reach a certain number of layers before it would encounter difficulties caused by the need to etch a high aspect ratio hole through an increasing number of layers.

The aspect ratio issue is not hard to understand: Let’s assume that the hole in a 24-layer stack has an aspect ratio of 40:1, then a 32-layer hole would have an aspect ratio of about 50:1, and a 64-layer stack would be something close to 100:1.  Today’s technology starts to have trouble etching holes with an aspect ratio higher than 60:1.

These high aspect ratios were thought to be the limiting factor that would prevent 3D NAND from continuing for more than three generations.  3D NAND could only have as many layers as the aspect ratio could support.

On a panel that I moderated at this year’s Flash Memory Summit one panelist, Dr. Myoung Kwan Cho of SK hynix, explained that although there is a limit Continue reading

Micron/Intel 3D XPoint Raises More Questions than Answers

Micron-Intel 3D XPoint Memory InternalsMicron and Intel hosted an event in San Francisco Tuesday, July 28, to introduce a new memory technology that they have named “3D XPoint”.  This technology was explained to be “up to 1,000 times faster, with 1,000 times the endurance of NAND flash” while being significantly cheaper than DRAM.

Some technical details:

  • 3D XPoint is a “Fundamentally Different Technology” than current memory types.  It’s an ReRAM that uses material property changes for bit storage where both DRAM and NAND use charge to store a bit
  • The chip currently stores 128Gb in two stacked planes of 64Gb each, storing a single bit per cell
    • Today’s densest production NAND flash chips store 128GB by using MLC, so this chip actually has twice as many bit cells as any production NAND flash
    • The companies do not see a clear limit to the number of planes they can stack, but are optimistic about this
  • The bulk mechanism can be used to store multiple bits on a single cell (MLC)
  • Today’s chip is made using a 20nm process, but can scale well past that
    • There is no clear limit of how far the technology can be scaled
  • It’s 1,000 times faster than NAND flash and offers 1,000 times NAND’s endurance
  • It’s 10 times as dense as today’s “Conventional Memory” (which I suppose to be DRAM)
  • This is not intended to replace either NAND or DRAM, but to coexist as a new memory layer between NAND and DRAM

The companies claim that other Continue reading

Contact

Jim Handy Objective Analysis Memory Market Research +1 (408) 356-2549 Jim.Handy (at) Objective-Analysis.com

Translate to:

Website Translation GTS Translation