Other New Technologies

How Many Kinds of Memory Are There?

Micron's History of Memory TechnologiesWith Micron & Intel’s July 28 introduction of their new 3D XPoint memory both companies touted that his is the first new memory in a long time, and that the list of prior new memory types is short.

How short is that list?  Interestingly, Intel and Micron have different lists.  The Micron list, shown in this post’s graphic (click to enlarge), cites seven types: “Ram” (showing a vacuum tube), PROM, SRAM, DRAM, EPROM, NOR flash, and NAND flash.  Intel’s list adds magnetic bubble memory, making it eight.  (Definitions of these names appear in another Memory Guy blog post.)

The Memory Guy finds both lists puzzling in that they left out a number of important technologies.

For example, why did Intel neglect EEPROM, which is still in widespread use?  EEPROMs (or E²PROMs) are not only found in nearly every application that has a serial number (ranging from WiFi routers to credit cards), requires calibration (like blood glucose monitoring strips and printer ink cartridges), or provides operating parameters (i.e. the serial presence detect – SPD – in DRAM DIMMs), but they still ship in the billions of units every year.  In its time EEPROM was an important breakthrough.  Over the years EEPROM has had a much greater impact than has PROM.

And, given that both companies were willing to include tubes, a non-semiconductor technology, why did both Continue reading

What Memory Will Intel’s Purley Platform Use?

Part of Intel Purley SlideThere has been quite a lot of interest over the past few days about the apparently-inadvertent disclosure by Intel of its server platform roadmap.  Detailed coverage in The Platform showed a couple of slides with key memory information for the upcoming Purley server platform which will support the Xeon “Skylake” processor family.

One slide, titled: “Purley: Biggest Platform Advancement Since Nehalem” includes this post’s graphic, which tells of a memory with: “Up to 4x the capacity & lower cost than DRAM, and 500x faster than NAND.”

The Memory Guy puzzled a bit about what this might be.  The only memory chip technology today with a cost structure lower than that of DRAM is NAND flash, and there is unlikely to be any technology within the leaked roadmap’s 2015-2017 time span that will change that.  MRAM, ReRAM, PCM, FRAM, and other technologies can’t beat DRAM’s cost, and will probably take close to a decade to get to that point.

Since that’s the case, then what is this mystery memory?  If we think of memory systems, rather than memory chips we can come up with one very plausible answer.  Intel may be very Continue reading

Memory Issues in Space & Medical Applications

How an alpha particle disrupts a memory bitThe Memory Guy was recently asked about using memories in a satellite. What would be a good technology to use in a space application?

The problem with space is that there is a lot of radiation.  Radiation on the earth’s surface is lower because it is stopped by the atmosphere, but in space there is an abundance of radiation that interferes with most semiconductors.  Radiation is also a concern in certain medical applications where a memory must maintain its contents while undergoing sterilization through irradiation.  Experiments on conventional flash memories have shown data loss at only 2% of the Continue reading

New Book: Vertical 3D Memory Technologies

Book: Vertical 3D Memory Technologies - Betty PrinceWiley has recently published a new book by Betty Prince titled Vertical 3D NAND Technologies that is one to consider if you want to bring yourself up to speed on recent research behind today’s and tomorrow’s 3D memory technologies.

For those who haven’t previously encountered Dr. Prince, she is the author of a number of key books covering memory design and holds memory patents written over her 30-year career in the field.

The book provides capsule summaries of over 360 papers and articles from scholarly journals on the subject of 3D memories, including DRAM, NAND flash, and stacked chips.

These papers are organized into Continue reading

Researchers Devise 4-D Memory

George P. BurdellOnly months after Samsung’s announcement of 3D memory production a new 4-dimensional memory has been prototyped by university researchers.  This memory not only has bits in the X and Y dimensions, like planar NAND, and the Z dimension, like 3D NAND, but it also grows in capacity over time, spanning the fourth dimension: time.

This research has been spearheaded by George P. Burdell, Assistant Associate Professor pro tem at Death Valley University.  The work is the culmination of a decades-long effort to find a way to increase memory sizes in systems without the need to replace chips or modules.

The team has created the name “Growing RAM” or “GRAM” for the technology.  Current prototypes exhibit very favorable Continue reading

The End of Flash Scaling

The End is at Hand for NAND Flash ScalingEveryone knows that flash memory is about to hit its scaling limit – it’s right around the corner.  We’re ready for it because it’s been right around the corner for more than a decade now.  It’s so close we can taste it.

When will it happen?

One thing that is quite clear is that nobody knows when NAND flash will stop scaling.  Everyone knows that it’s soon, but researchers continue to find ways to push the technology another couple of process nodes past where anyone thought it could possibly go, and they have been doing this since Continue reading

WIOMING: Another Spin on the Hybrid Memory Cube

ST-Ericsson & CEA-Leti WIOMING Multichip ModuleAt a Conference in San Francisco today (Tuesday December 13 ) ST-Ericsson and CEA-Leti presented a paper on something the companies called a: “Breakthrough 3DIC with Wide I/O Interface.”

This product appears to be a variation on the Hybrid Memory Cube, or HMC concept detailed in a prior post.

Remember that the HMC stacks a number of DRAM chips atop a logic chip.  The memories store data and communicate to the logic chip through thousands of through-silicon vias (TSVs) while the logic chip handles communications with the outside world. Continue reading

Contact

Jim Handy Objective Analysis Memory Market Research +1 (408) 356-2549 Jim.Handy (at) Objective-Analysis.com

Translate to:

Website Translation GTS Translation