IEEE

Is Intel Adding Yet Another Memory Layer?

Where the Piecemakers DRAM FitsAt the International Solid State Circuits Conference (ISSCC) last week a new “Last Level Cache” was introduced by a DRAM company called “Piecemakers Technology,” along with Taiwan’s ITRI, and Intel.

The chip was designed with a focus on latency, rather than bandwidth.  This is unusual for a DRAM.

Presenter Tah-Kang Joseph Ting explained that, although successive generations of DDR interfaces has increased DRAM sequential bandwidth by a couple of orders of magnitude, latency has been stuck at 30ns, and it hasn’t improved with the WideIO interface or the new TSV-based High Bandwidth Memory (HBM) or the Hybrid Memory Cube (HMC).  Furthermore, there’s a much larger latency gap between the processor’s internal Level 3 cache and the system DRAM than there is between any adjacent cache levels.  The researchers decided to design a product to fill this gap.

Many readers may be familiar with my bandwidth vs. cost chart that the Memory Guy has used to introduce SSDs and 3D XPoint memory.  The gap that needs filling is Continue reading

Comparing Samsung V-NAND to Micron 16nm Planar NAND

Andrew Walker, SchiltronI was recently directed to a very interesting blog post written by 3D technologist Andrew Walker of Schiltron in which he compares two NAND flash chips that were presented at the IEEE International Solid State Circuits Conference (ISSCC) on February 12.

The post, titled Samsung’s V-NAND Flash at the 2014 ISSCC: Ye Distant Spires… is on the 3D InCites website.

Dr. Walker puts a lot more time and effort into his graphic representations of 3D NAND chips than do others (The Memory Guy included) and this makes it much easier to understand the issues he points out.  He shows us that Samsung’s 3D NAND cell is about 5 times the size of a 40nm planar NAND cell and about 30 times that of Micron’s 16nm planar cell, and that the 3D NAND’s physical area is unlikely to change with any future 3D technology generations.

For this and other reasons (given in the article) he states that the Samsung V-NAND is “an impressive achievement but not a realistic foundation for the future.”

After having compiled my series on 3D NAND I can appreciate Dr. Walker’s opinion.  This is certainly going to be a difficult technology to master, and it could be quite some time before the cost structure for 3D NAND can compete against that of today’s planar technologies.

Give the Walker post a quick read and judge for yourself whether we are at the brink of a 3D conversion or if this technology can be expected to slip out a few years.

3D NAND: Who Will Make It and When?

SK hynix 3D NAND Cross SectionThis series has looked at 3D NAND technology in a good deal of technical depth.  The last question to be answered centers around the players and the timing of the technology.  A lot has been said about the technology and its necessity.  Will everyone be making 3D NAND?  When will this big transition occur?

This post will provide an update as of its publication (13 December 2013) to show each company’s current status, to the best of The Memory Guy’s understanding.  Readers may want to refer back to the earlier posts in this series, as well as to a June 2013 Nikkei TechON article that gives a good review of the 3D NAND alternatives that have been presented at various technical conferences.

Let’s start with Samsung, the largest producer of NAND flash today.  Just prior to Memcon 2013 last Continue reading

3D NAND: How do You Access the Control Gates?

Samsung's TCAT NAND Flash Wordline COnnectionsOne of the thornier problems in making 3D NAND is the job of connecting the peripheral logic (the row decoders) to all of those control gates that are on layers buried somewhere within the bit array.  Remember that the control gates are the conductive sheets of polysilicon or tantalum nitride at various depths in the chip.

The problem boils down to this: You can’t run connections from each layer up or down the side of the chip to get to the CMOS circuits below.  Instead you have to create a terrace structure to expose and connect to each layer.

These connections are made by etching a stair-step pattern into the layers and sinking Continue reading

An Alternative Kind of Vertical 3D NAND String

Samsung's TCAT 3D NAND flashMy prior 3D NAND post explained how Toshiba’s BiCS cell works, using a silicon nitride charge trap to substitute for a floating gate.  This post will look at an alternative technology used by Samsung and Hynix which is illustrated in the first graphic, a diagram Samsung presented at a technical conference. This cell also uses a charge trap.

Let The Memory Guy warn you, if the process in my prior post seemed tricky, this one promises to put that one to shame!

Part of this stems from the use of a different kind of NAND bit cell.  You can shrink flash cells smaller if you use a high-k gate dielectric (one with a high dielectric constant “k”) since it Continue reading

3D NAND: Making a Vertical String

Toshiba's Original BiCS Diagram - IEDM 2007Let’s look at how one form of 3D NAND is manufactured.  For this post we will explore the original design suggested by Toshiba at the IEEE’s International Electron Device Meeting (IEDM) in 2007.  It’s shown in the first graphic of this post.  (Click on any of the graphics for a better view.)

Toshiba calls this technology “BiCS” for “Bit Cost Scaling.”  The technique doesn’t scale the process the way the world of semiconductors has always done to date – it scales the cost without shrinking the length and width of the memory cell.  It accomplishes this by going vertically, as is shown in this post’s first graphic.

This takes a special effort. This is where the real Continue reading

Contact

Jim Handy Objective Analysis Memory Market Research +1 (408) 356-2549 Jim.Handy (at) Objective-Analysis.com

Translate to:

Website Translation GTS Translation