Samsung

Samsung Power Glitch – Is It Important?

3D NANDOn Saturday, June 18, Samsung’s Xian fab, the only facility in the world currently producing 3D NAND flash, suffered a power failure.  How much of a problem is this?

The answer really depends upon who you ask.  An article in the Financial Express quoted Samsung as saying that it would have a minimal impact, and that full-scale operations should resume in a few days.  The article also said that Samsung estimated that the wafer loss would be below 10,000 wafers.

Assuming that the entire loss consisted of Samsung’s most advanced 48-layer 256Gb 3D NAND a 10,000-wafer loss would be less than 1% of total industry gigabyte shipments.

Korea Times quoted an anonymous fund manager who said: “The one-time incident will cost Samsung up to 20 billion won, which is very minimal.  It won’t make heavy impact on Samsung’s chip business and the entire industry.”

According to Korean news source Chosenilbo the outage was caused by Continue reading

Samsung’s Colossal 128GB DIMM

Samsung_128GB TSV RDIMMIn a November 25 press release Samsung introduced a 128GB DDR4 DIMM.  This is eight times the density of the largest broadly-available DIMM and rivals the full capacity of mainstream SSDs.

Naturally, the first question is: “How do they do that?”

To get all the chips into the DIMM format Samsung uses TSV interconnects on the DRAMs.  The module’s 36 DRAM packages each contain four 8Gb (1GB) chips, resulting in 144 DRAM chips squeezed into a standard DIMM format.  Each package also includes a data buffer chip, making the stack very closely resemble either the High-Bandwidth Memory (HBM) or the Hybrid Memory Cube (HMC).

Since these 36 packages (or worse, 144 DRAM chips) would overload the processor’s address bus, the DIMM uses an RDIMM protocol – the address and control pins are buffered on the DIMM before they reach the DRAM chips, cutting the processor bus loading by an order of magnitude or more.  RDIMMs are supported by certain server platforms.

The Memory Guy asked Samsung whether Continue reading

DRAM Prices Down, But Not So Bad

DRAM Spot Price per GB HistoryFor the past ten months DRAM prices have been undergoing a steady slide.  Is the market in a crisis?  Not really!

Today’s low spot price of $4.30/GB puts us on a par with February 2013, a full two years ago (see chart).  DRAM makers have done a lot to reduce their production costs since that time, so their margins this quarter will be much better than they were in the first quarter of 2013.

But we are still a very long way from the bottom of the last market downturn.  In late 2012 spot prices reached a low of $2.52/GB, a full 41% lower than today’s lowest spot prices.

The Memory Guy models the production costs of leading memory chips, and DRAM manufacturing costs have been decreasing for the past several years at an average annual rate of about 30%.  That means that costs today are about half of what they were two years ago, and one third of their level this time in 2012.

So even though today’s Continue reading

Four New Players Join 3D NAND Market

Micron & Intel's 3D NAND Die PhotoThe following is excerpted from an Objective Analysis Alert sent to our clients on March 26: On March 25 SanDisk and Toshiba announced sampling of their 3D NAND flash technology, a 128Gb (gigabit) 48-layer second-generation product based on the BiCS technology that the companies pioneered in 2007.  Pilot production will begin in the second half of 2015 with meaningful production targeted for 2016. This release was issued at the same time that Intel and Micron were briefing the press and analysts for their March 26 announcement of their own 3D NAND offering (pictured), which is currently sampling with select customers, and is to enter full production by year-end.  The Micron-Intel chip is a 32-layer 256Gb device, which the companies proudly point out is the densest flash chip in the industry.

Similarities and Differences

These two joint ventures (Intel-Micron and SanDisk-Toshiba) are taking very different Continue reading

NAND Sourcing Changes as Supplies Tighten

A Pile of ChipsLast week Micron and IBM announced that Micron would be IBM’s main supplier of NAND flash chips.  The week before Micron announced a strategic agreement with Seagate to supply NAND flash. Why all this activity?

It comes down to today’s budding NAND flash shortage and the fact that suppliers tend to groom their customer lists when supplies get short.

Neither IBM nor Seagate represent the enormous opportunities that major consumer electronics firms like Apple do.  Since many NAND suppliers are very cost-focused they look for customers that need very little support and purchase in high volumes.

IBM and Seagate look for a lot of support, and, since they both ship mostly enterprise flash systems or SSDs, they consume relatively small unit volumes of NAND flash chips.

These companies need to have an understanding of Continue reading

Memory Issues in Space & Medical Applications

How an alpha particle disrupts a memory bitThe Memory Guy was recently asked about using memories in a satellite. What would be a good technology to use in a space application?

The problem with space is that there is a lot of radiation.  Radiation on the earth’s surface is lower because it is stopped by the atmosphere, but in space there is an abundance of radiation that interferes with most semiconductors.  Radiation is also a concern in certain medical applications where a memory must maintain its contents while undergoing sterilization through irradiation.  Experiments on conventional flash memories have shown data loss at only 2% of the Continue reading

Samsung Begins Operations at its Xi’an Fab

Samsung's Xi'an, China fabSamsung has announced that the company’s newest memory fabrication plant (Fab) in Xi’an, China has “begun full-scale production operations”, adding that: “The new facility will manufacture Samsung’s advanced NAND flash memory chips: 3D V-NAND.”

I immediately asked whether the plant will build products other than 3D NAND, and the company has replied that this will be the only product produced in the Xi’an plant.  What Samsung has not said is what is meant by “full-scale production operations.”  Typically wafer fabs start with a very low production capacity as new tools are being qualified, only ramping to high-volume production a year or more after initial production.

Samsung points out that production has begun a mere 20 months after initial groundbreaking, which is quite Continue reading

Comparing Samsung V-NAND to Micron 16nm Planar NAND

Andrew Walker, SchiltronI was recently directed to a very interesting blog post written by 3D technologist Andrew Walker of Schiltron in which he compares two NAND flash chips that were presented at the IEEE International Solid State Circuits Conference (ISSCC) on February 12.

The post, titled Samsung’s V-NAND Flash at the 2014 ISSCC: Ye Distant Spires… is on the 3D InCites website.

Dr. Walker puts a lot more time and effort into his graphic representations of 3D NAND chips than do others (The Memory Guy included) and this makes it much easier to understand the issues he points out.  He shows us that Samsung’s 3D NAND cell is about 5 times the size of a 40nm planar NAND cell and about 30 times that of Micron’s 16nm planar cell, and that the 3D NAND’s physical area is unlikely to change with any future 3D technology generations.

For this and other reasons (given in the article) he states that the Samsung V-NAND is “an impressive achievement but not a realistic foundation for the future.”

After having compiled my series on 3D NAND I can appreciate Dr. Walker’s opinion.  This is certainly going to be a difficult technology to master, and it could be quite some time before the cost structure for 3D NAND can compete against that of today’s planar technologies.

Give the Walker post a quick read and judge for yourself whether we are at the brink of a 3D conversion or if this technology can be expected to slip out a few years.

Why NAND is So Difficult to Scale

ASML chart chowing the lithography used for 4X, 3X, 2X, and 1Xnm planar NAND and 3D NANDNAND flash is the process leader in memory technology, and this puts it in a very challenging position: It must ramp to high volume production using techniques that have never been tried before.

The graphic for this post (click to enlarge), supplied by ASML, the semiconductor industry’s leading lithography tool supplier, illustrates the challenge of migrating from one process node to the next.  Across the bottom, on the X-axis, are representative process nodes ranging from “2D-45”, or two-dimensional (planar) 45nm NAND, to “3D-5x”, or three-dimensional 5xnm NAND.  Below these numbers are the year of volume production.

The vertical axis, labeled “Tolerance” represents the minimum Continue reading

Did SK hynix Beat Samsung to the 8Gb LPDDR4?

SK hynix (top) and Samsung (bottom) 8Gb 20nm-class LPDDR4Every so often something very strange happens that puzzles The Memory Guy.  On December 29 (or Dec. 30 in Seoul) something odd occurred.

I received two e-mails, one from SK hynix at 3:55 PM Pacific Time, and one from Samsung exactly one hour later.  Both were press releases.

The SK hynix release was titled: “SK Hynix Developed the World’s First Next Generation Mobile Memory LPDDR4”.  It announced that the company is sampling its 20nm-class 8Gb LPDDR4 DRAM to customers.

The Samsung release was Continue reading

Contact

Jim Handy Objective Analysis Memory Market Research +1 (408) 356-2549 Jim.Handy (at) Objective-Analysis.com

Translate to:

Website Translation GTS Translation