3D NAND: Who Will Make It and When?

SK hynix 3D NAND Cross SectionThis series has looked at 3D NAND technology in a good deal of technical depth.  The last question to be answered centers around the players and the timing of the technology.  A lot has been said about the technology and its necessity.  Will everyone be making 3D NAND?  When will this big transition occur?

This post will provide an update as of its publication (13 December 2013) to show each company’s current status, to the best of The Memory Guy’s understanding.  Readers may want to refer back to the earlier posts in this series, as well as to a June 2013 Nikkei TechON article that gives a good review of the 3D NAND alternatives that have been presented at various technical conferences.

Let’s start with Samsung, the largest producer of NAND flash today.  Just prior to Memcon 2013 last Continue reading

How Do You Erase and Program 3D NAND?

How FN Tunneling WorksSome of my readers have asked: “How is 3D NAND programmed and erased?  Is it any different from planar NAND?”

In a word: No.

(Before I get too far into this allow me to admit that The Memory Guy doesn’t understand quantum physics, so I will be presenting this only to the depth that I understand it.  There will be no band-gap diagrams or equations to wrestle with.)

Both 3D NAND and planar NAND use Fowler Nordheim Tunneling (FN) to both program and erase.  This differs from NOR flash which programs bits using Continue reading

An Alternative Kind of Vertical 3D NAND String

Samsung's TCAT 3D NAND flashMy prior 3D NAND post explained how Toshiba’s BiCS cell works, using a silicon nitride charge trap to substitute for a floating gate.  This post will look at an alternative technology used by Samsung and Hynix which is illustrated in the first graphic, a diagram Samsung presented at a technical conference. This cell also uses a charge trap.

Let The Memory Guy warn you, if the process in my prior post seemed tricky, this one promises to put that one to shame!

Part of this stems from the use of a different kind of NAND bit cell.  You can shrink flash cells smaller if you use a high-k gate dielectric (one with a high dielectric constant “k”) since it Continue reading


Jim Handy Objective Analysis Memory Market Research +1 (408) 356-2549 Jim.Handy (at) Objective-Analysis.com

Translate to:

Website Translation GTS Translation