Samsung’s Colossal 128GB DIMM

Samsung_128GB TSV RDIMMIn a November 25 press release Samsung introduced a 128GB DDR4 DIMM.  This is eight times the density of the largest broadly-available DIMM and rivals the full capacity of mainstream SSDs.

Naturally, the first question is: “How do they do that?”

To get all the chips into the DIMM format Samsung uses TSV interconnects on the DRAMs.  The module’s 36 DRAM packages each contain four 8Gb (1GB) chips, resulting in 144 DRAM chips squeezed into a standard DIMM format.  Each package also includes a data buffer chip, making the stack very closely resemble either the High-Bandwidth Memory (HBM) or the Hybrid Memory Cube (HMC).

Since these 36 packages (or worse, 144 DRAM chips) would overload the processor’s address bus, the DIMM uses an RDIMM protocol – the address and control pins are buffered on the DIMM before they reach the DRAM chips, cutting the processor bus loading by an order of magnitude or more.  RDIMMs are supported by certain server platforms.

The Memory Guy asked Samsung whether Continue reading “Samsung’s Colossal 128GB DIMM”

New Materials Solve Key 3D NAND Issue

imec III-V 3D NAND channelAt the IEEE’s IEDM conference last week Belgian research consortium imec showed an improved “gate first” 3D NAND that replaced the conventional polysilicon channel with InGaAs, Indium Gallium Arsenide, a III-V material.  This new technique opens the door to higher layer counts in 3D NAND, allowing denser parts to be made in support of further cost reductions.

For those unfamiliar with the term, the “gate first” approach is the foundation of Toshiba’s BiCS NAND, and presumably Micron’s floating gate 3D NAND.

imec explains that “Replacing poly-Si as a channel material is necessary, as it is not suitable for long-term scaling.”  Further they report that on-state current (ION) and transconductance (gm) of the III-V channel was better than that of polysilicon devices, without any programming, erase, or endurance degradation.  The device’s characteristics are shown in this post’s graphic.

The consortium reports that the current through the Continue reading “New Materials Solve Key 3D NAND Issue”