This is Part 4 of a series contributed by Ron Neale to the Memory Guy blog, in which Ron looks into some important detailed analytical work by a joint team at IBM and Yale University which might point to the way of achieving improved PCM endurance.
I want, in this final part, to focus on its possible implications for commercial PCM products.
When Intel and Micron first introduced 3D XPoint Memory the companies claimed that it would be 1,000 times as fast as flash memory with 1,000 times the endurance at ten times the density of standard memory (meaning DRAM). Now that Intel’s XPoint-based Optane SSDs have been released and their specifications are public we can estimate what the technology’s endurance might be.
The table below, explained in another Memory Guy blog post, gives estimates of best-case endurance for the cells in the XPoint memory in Optane SSDs. In other words, with a sophisticated enough controller, good DRAM buffering, and overprovisioning, all of which are techniques commonly used to extend the life of the media in a NAND flash SSD, the cell lifetime could be significantly lower than that shown in the last column of the table and the SSD would still provide the specified endurance. (These techniques are explained in detail in an SSD Guy blog post series for anyone who is interested in understanding them.)
As the calculated Continue reading “Extending the Write/Erase Lifetime of Phase Change Memory: Part 4 – The Possible Implications for 3D XPoint and Optane”