Jim Handy

Forecast Videos Prove A History of Accuracy

ForecastsEvery year the folks at VLSI Research provide The Memory Guy with an opportunity to share the latest Objective Analysis forecast with the world.  They record a 20-minute video highlighting the forecast in a conversation between me and VLSI’s chairman, Dan Hutcheson.

There are now twelve videos on the site, one for each year from 2008 to 2019.  That’s quite a collection!

Over the course of each video I not only present the forecast, but also give an overview of the thinking behind it.  Typically I explain the impact of high or low capital spending in prior years, but in some forecasts I explain how other issues (in particular NAND flash’s excruciating conversion from planar to 3D) can create a shortage independent of capital spending patterns.

We also go over what went right or wrong with the prior year’s forecast.  Things that  go wrong are generally macroeconomic issues like the Continue reading

NV Stacked Memory: Selectors and Forming (Part 1)

Ron NealeContributor Ron Neale analyzes selector technologies presented by CEA Leti at the 2018 IEDM conference last December.


At the close of last year the IEDM maintained its long-standing reputation for offering across-the-board the right focus at the right time on important and key parts of the electronic device discipline.   For those with an interest in the future of stacked or 3D NV-memory arrays there were a number of important papers and presentations on a variety of thin film memory selectors or matrix isolation devices (MIDs).

Important, because as the move towards stacked memory arrays for storage class memory (SCM) and persistent  memory (PM) applications gains momentum, the thin film selector may be the device which is key in determining the performance and reliability for a number of different types of NV memory arrays or even the very existence of that type of memory array.  One of the important and poorly understood variables in the mix is the selector forming voltage and the structural changes which lead from it to the operating device threshold voltage which, in my view needs a lot more by way of detailed understanding.

As the memory array moves into Continue reading

Memory Sightings at ISSCC

ISSCC LogoThis week the International Solid State Circuits Conference (ISSCC) was held in San Francisco.  What was there?  The Memory Guy will tell you!

NAND Flash

There were three NAND flash papers, one each from Toshiba, Samsung, and Western Digital Corp. (WDC).

Toshiba 96-layer 1Tb QLC NANDToshiba described a 96-layer QLC 1.33 terabit chip.  Like the chip that Toshiba presented last year, this one uses CUA, which Toshiba calls “Circuit Under Array” although Micron, who originated the technology, says that CUA stands for “CMOS Under Array.”  Toshiba improved the margins between the cells by extending the gate threshold ranges below zero, a move that forced them to re-think the sense amplifiers.  They also implemented a newer, faster, lower-error way to Continue reading

Emerging Memories Today: Forecasting Emerging Memories

Emerging Memory ParadeReaders who have been following this series will note that The Memory Guy has so far described everything pertaining to emerging memory technologies except for the market outlook.  In this post I will share some key elements of our emerging memory forecast.

Since this is a simple blog post the forecast coverage is brief.  The detailed forecast appears in the report that is the basis of this blog post series: Emerging Memories Poised to Explode.

The first large-scale applications poised to replace today’s standard NOR flash with a new memory technology will be the embedded memories in CMOS logic chips that are processed on advanced process nodes (processes of 28nm and smaller.)  Many CMOS logic chips use NOR flash, especially microcontrollers (MCUs) which are found in a very broad range of applications.  The vast majority of MCUs, though, are uncomplicated and can therefore be economically produced on larger, older process nodes like 90nm and greater.

At tighter processes flashless versions of some MCUs already ship that can Continue reading

Where is Micron’s QuantX?

Micron Quantx LogoFor more than a year The Memory Guy has been fielding questions about Micron’s QuantX products.

First announced at the 2016 Flash Memory Summit, this brand name has been assigned to Micron SSDs and DIMMs that use the Intel/Micron 3D XPoint Memory.  Originally QuantX products were scheduled to ship in 2017, but Micron is currently projecting availability in 2019.  My clients wonder why there have been these delays, and why Micron is not more actively marketing this product.

The simple answer is that it doesn’t make financial sense for Micron to ship these products at this time.

Within two weeks of the first announcement of 3D XPoint Memory, at the 2015 Flash Memory Summit, I knew and explained that the technology would take two years or more to reach manufacturing cost parity with DRAM, even though Intel and Micron loudly proclaimed that it was ten times denser than DRAM.  This density advantage should eventually allow XPoint manufacturing costs to drop below DRAM costs, but any new technology, and even old technologies that are in low-volume production, suffer a decided scale disadvantage against DRAM, which sells close Continue reading

Emerging Memories Today: Emerging Memory Companies

Emerging Memory ParadeMost memory industry participants view emerging memories as the eventual path of the business: There’s no doubt that today’s memory technologies will stop scaling, and that new memory technologies will need to replace today’s leading technologies both in the embedded and stand-alone spaces.  This includes DRAM, NAND flash, NOR flash, and SRAM.  Because this outlook is held by nearly everyone in the industry, all major memory manufacturers are investing in alternative memory technologies.  The leading players are researching multiple technologies at the same time.

Meanwhile, the industry outlook has allowed many university research projects and other similar efforts to gain funding to develop new memory types, spawning a large number of small single-technology companies tightly focused on one technology or another: ReRAM, MRAM, FRAM, and others, including such highly-differentiated technologies as carbon nanotubes and printable polymers.

In our Emerging Memory report Tom Coughlin and I did our Continue reading

The Objective Analysis 2019 Chip Forecast

It’s the time of year for Objective Analysis to release its 2019 forecast.  What does next year promise?

Every year VLSI Research invites us to produce a video of our semiconductor revenue forecast for the coming year.  Since we have been doing this for a number of years there are now twelve videos on the VLSI Research “WeSRCH” website.  The latest video can be viewed by clicking on this link.

We’re proud of our record of semiconductor forecasts.  While other market research companies dislike discussing their past successes and failures, Objective Analysis puts all of our historical forecasts online in one simple table on our website’s Forecast Accuracy page.  A careful review reveals a stellar track record, with the exception of 2009 and 2015, both of which were related to major macroeconomic events that even leading world economists failed to predict (i.e. the 2008 Global Economic Collapse and the combined China currency devaluation and oil price collapse in 2014.)

Another important factor in the Objective Analysis forecast methodology is that we only update the forecast once a year.  Our clients dislike being told one thing at the beginning of the year and something completely different at year-end.  If the forecast is Continue reading

Emerging Memories Today: Process Equipment Requirements

Emerging Memory ParadeSomething that distinguishes the Emerging Memory report that Tom Coughlin and I recently published is the depth in which we cover in the field.  This is not measured in pages, but in the topics that we cover.  For example, this blog post, excerpted from the report, covers the changes in tooling that will be necessary to allow a standard CMOS wafer fabrication plant (a “fab”) to produce an emerging memory technology, and the impact that this is likely to have on the market for semiconductor tools.

All of the emerging memory technologies covered in the Memory Guy’s previous post share certain things in common.  One of them is that they are built between metal layers, rather than in the silicon CMOS substrate itself (with the possible exception of the hafnium oxide FRAM.)

This means that the tooling required for any of these technologies will bear a strong resemblance to that used by any of the others.  For the most part these tools will be used for deposition and etch.  The lithography requirements will be satisfied by the tools used to pattern the metal layers.

The process flow in this figure sheds some light on the steps that Continue reading

Intel’s Losses Amid Others’ Gains

Intel's NSG profits vs the  competitionWhy has Intel’s NVM Solutions Group (NSG), the owner of the company’s NAND flash, SSD, and 3D XPoint businesses, been losing money during a time when all other manufacturers are more profitable than they have been in years?

This is a question that certain investors have put to The Memory Guy for the past year or so, and it deserves some explanation.

This post’s graphic compares Intel’s NSG net profit margins to the margins published by other memory companies.  (Click on it to see the whole chart.)  This isn’t a completely clean comparison since the data for Samsung, SK hynix, and Micron includes DRAM, and recent quarters are missing for Western Digital (SanDisk) and Toshiba since these companies have stopped sharing comparable financials, but it still serves as a relatively clear indication that Intel’s NSG (blue) is losing money while all other companies are quite profitable.

Something seems dreadfully Continue reading

Emerging Memories Today: The Technologies: MRAM, ReRAM, PCM/XPoint, FRAM, etc.

Emerging Memory ParadeHere in the US we use an extremely odd expression.  If there are multiple varieties of an item we commonly say: “There are more of them than you can shake a stick at!”  This is a very lengthy way to say: “numerous.”  (I don’t believe that ANYONE understands how that expression became a part of our vernacular!)  Although The Memory Guy isn’t normally seen shaking a stick, I find it an apt way to describe the numerous new memory technologies that are being pioneered today.  There are certainly lots of them!

This post is intended to be very high-level technical description of today’s leading emerging memory technologies.  These are excerpts of the in-depth descriptions that can be found in our recently-released report: Emerging Memories Poised to Explode.

PCM: Also known as PRAM, Phase-Change Memory technology is based upon a material that can be either amorphous or crystalline at normal ambient temperatures.  The crystalline state has a low resistance and the amorphous state has a high resistance.  This is controlled by melting the bit cell by passing a current though it and then allowing it to cool at different rates.

In chemistry and physics, anything with a Continue reading