DRAM

What’s Inside an Optane DIMM?

Part of Optane DIMM LogoWith the release of its Cascade Lake family of processors today (formally called the “2nd Generation Intel Xeon Scalable processor”) Intel disclosed more details about its Optane DIMM, which has been officially named the “Intel Optane DC Persistent Memory.”  This DIMM’s architecture is surprisingly similar to an SSD, even to the point of its having error correction and encryption!

The Memory Guy doesn’t generally cover SSDs, but I do cover DIMMs, so this is one of those posts that I could have put into either of my blogs: The Memory Guy or The SSD Guy.  I have decided to put it here with the hopes that it will be easier for members of the memory community to find.

The internal error correction, the encryption, and the fact that 3D XPoint Memory wears out and must use wear leveling, all cause the Optane DIMM’s critical timing path to be slower than the critical path in a DRAM DIMM, rendering the Optane DIMM unsuitable for code execution.  This, and the fact that XPoint writes are slower than its reads, all help to explain why an Optane DIMM is never used as the only memory in a system: there is always a DRAM alongside the Optane DIMM to provide faster Continue reading

Video: What’s Driving Tomorrow’s Semiconductors?

Samsung ForumIn early February the Samsung Strategy & Innovation Center asked for The Memory Guy to present an outlook for semiconductors as a part of the company’s Samsung Forum series.

Samsung kindly posted a video of this presentation on-line for anyone to watch.

Naturally, the presentation is memory-focused since it consists of the Memory Guy presenting to the world’s leading memory chip supplier.  Still, it also covers total semiconductor revenues and demand drivers for future non-memory technologies, as well as memory chips.

During the presentation I explained that the next few years will bring semiconductors into new applications while chips will maintain their strength in existing markets. I showed how semiconductor demand doesn’t change much over time, but that the real swing factor in chip revenues is Continue reading

Forecast Videos Prove A History of Accuracy

ForecastsEvery year the folks at VLSI Research provide The Memory Guy with an opportunity to share the latest Objective Analysis forecast with the world.  They record a 20-minute video highlighting the forecast in a conversation between me and VLSI’s chairman, Dan Hutcheson.

There are now twelve videos on the site, one for each year from 2008 to 2019.  That’s quite a collection!

Over the course of each video I not only present the forecast, but also give an overview of the thinking behind it.  Typically I explain the impact of high or low capital spending in prior years, but in some forecasts I explain how other issues (in particular NAND flash’s excruciating conversion from planar to 3D) can create a shortage independent of capital spending patterns.

We also go over what went right or wrong with the prior year’s forecast.  Things that  go wrong are generally macroeconomic issues like the Continue reading

Memory Sightings at ISSCC

ISSCC LogoThis week the International Solid State Circuits Conference (ISSCC) was held in San Francisco.  What was there?  The Memory Guy will tell you!

NAND Flash

There were three NAND flash papers, one each from Toshiba, Samsung, and Western Digital Corp. (WDC).

Toshiba 96-layer 1Tb QLC NANDToshiba described a 96-layer QLC 1.33 terabit chip.  Like the chip that Toshiba presented last year, this one uses CUA, which Toshiba calls “Circuit Under Array” although Micron, who originated the technology, says that CUA stands for “CMOS Under Array.”  Toshiba improved the margins between the cells by extending the gate threshold ranges below zero, a move that forced them to re-think the sense amplifiers.  They also implemented a newer, faster, lower-error way to Continue reading

Where is Micron’s QuantX?

Micron Quantx LogoFor more than a year The Memory Guy has been fielding questions about Micron’s QuantX products.

First announced at the 2016 Flash Memory Summit, this brand name has been assigned to Micron SSDs and DIMMs that use the Intel/Micron 3D XPoint Memory.  Originally QuantX products were scheduled to ship in 2017, but Micron is currently projecting availability in 2019.  My clients wonder why there have been these delays, and why Micron is not more actively marketing this product.

The simple answer is that it doesn’t make financial sense for Micron to ship these products at this time.

Within two weeks of the first announcement of 3D XPoint Memory, at the 2015 Flash Memory Summit, I knew and explained that the technology would take two years or more to reach manufacturing cost parity with DRAM, even though Intel and Micron loudly proclaimed that it was ten times denser than DRAM.  This density advantage should eventually allow XPoint manufacturing costs to drop below DRAM costs, but any new technology, and even old technologies that are in low-volume production, suffer a decided scale disadvantage against DRAM, which sells close Continue reading

Valuable Memory Technical Resources

India Inst of Tech Hyderabad SealEver since moving to Silicon Valley some time ago The Memory Guy has worked with a number of impressively-talented engineers from India.  Some are educated in the US, while others are educated in India.  One university that produces excellent engineers is the Indian Institute of Technology, or IIT.

It comes as no surprise, then, to find a valuable resource produced by an IIT faculty member.  Dr. Sparsh Mittal, an assistant professor at IIT Hyderabad, reached out to me to share some papers that he thought might be of interest to Memory Guy readers. They were a few of roughly 40 papers that he has posted on his publications page.  He explained that he previously worked at Oak Ridge National Lab, in the US.

Dr. Sparsh has published several very comprehensive surveys on memory systems, both conventional and emerging, covering topics like DRAM reliability, NVM/Flash, ReRAM-based processing-in-memory, and the architecture of neural networks.  The web page lists 34 surveys, eight of them Continue reading

Memory Market Falling, as Predicted

Memory Price & Cost BehaviorIt’s earnings call season, and we have heard of a slowing DRAM market and NAND flash price declines from Micron, SK hynix, Intel, and now Samsung.  DRAM prices have stopped increasing, and that can be viewed as a precursor to a price decline.

Samsung’s 31 October, 2018 3Q18 earnings call vindicated Objective Analysis‘ forecast for a 2H18 downturn in memories that will take the rest of the semiconductor market with it.

Those familiar with our forecast know that for a few years we have been predicting a downturn in the  second half of this year as NAND flash prices fall, followed by a DRAM price collapse.  After the DRAM collapse the rest of the semiconductor market will undergo a downturn.

We’ve been calling for this downturn for some time.  Dan Hutcheson at VLSI Research has been videotaping our forecast every December for the past Continue reading

Why DRAM is Threatened by SSDs

Memcon Slide on FlashConventional wisdom holds that SSDs will someday displace all HDDs, but in reality SSDs are proving to be more of a challenge to the DRAM market than to the HDD market.

Right now you are probably reviewing the date of this post to make sure it’s not dated April 1.  I assure you that this is the truth.  To understand it, though, you must look at a computer as a computer architect would, or, in other words, the way that an application program sees the memory/storage hierarchy.

To the application program there is no HDD and memory, there is only memory.  The Virtual Memory system, a part of the operating system, hides the difference between the two by moving code and data into DRAM as it is needed and back onto the HDD when it is no longer important, without telling the application program that it is moving anything around.  I like to tell people that the DRAM makes the HDD look fast, and the HDD makes the DRAM look big.

If you think of the DRAM as something that makes the HDD look fast, then additional DRAM should help to make the Continue reading

How to Worsen a DRAM Shortage

Fuzhou Intermediate People's CourtIn an interesting twist to today’s ongoing DRAM shortage, the Fuzhou Intermediate People’s Court, Fujian Province, China today granted a preliminary injunction to prevent Micron’s Chinese subsidiaries from manufacturing, selling, or importing certain DRAM modules and solid state drives in China.

This injunction, according to a Micron press release, was filed without allowing Micron to present its defense, a process which Micron finds to be: “inconsistent with providing a fair hearing through appropriate legal processes and procedures.”

Micron’s customers in China will find that the DRAM shortage has just become even worse than it already was.  Before today China’s government was concerned enough about the shortage’s rising DRAM prices to have launched a price fixing investigation only one month ago.  One result of today’s decision will be that there will be less DRAM in China, and that will probably cause prices to rise even more.

What will be the impact to Micron?  I find it unlikely that this injunction is likely to change any DRAM maker’s business much during a shortage.  Any lack of Micron DRAM in China is likely to be serviced by Samsung and SK hynix, but since there’s a shortage, these companies will need to reduce their shipments outside of China to satisfy Continue reading

Storage/Memory Hierarchy 40 Years Ago

1978 Memory/Storage HierarchyLast year I stumbled upon something on the Internet that I thought would be fun to share.  It’s the picture on the left from a 1978 book by Laurence Allman: Memory Design Microcomputers to Mainframes.  The picture’s not too clear, but it is a predecessor to a graphic of the memory/storage hierarchy that The Memory Guy often uses to explain how various elements (HDD, SSD, DRAM) fit together.

On the horizontal axis is Access Time, which the storage community calls latency.  The vertical axis shows cost per bit.  The chart uses a log-log format: both the X and Y axes are in orders of magnitude.  This allows a straight line to be drawn through the points that represent the various technologies, and prevent most of the technologies from being squeezed into the bottom left corner of the chart.

What I find fascinating about this graphic is not only the technologies that it includes but also the way that it’s presented.  First, let’s talk about the technologies.

At the very top we have RAM: “TTL, ECL, and fast MOS static types.”  TTL and ECL, technologies that are seldom Continue reading