Samsung’s Aquabolt-XL Processor-In-Memory (Part 2)

Sketch of a sledgehammer driving a wedge into a logSamsung has been strongly promoting its “Aquabolt-XL” Processor-In-Memory (PIM) devices for the past year.  In this second post of a two-part series The Memory Guy will present other companies’ similar PIM devices, and will discuss the PIM approach’s outlook for commercial success.

Part 1 of this series explains the concept of Processing in Memory (PIM), details Samsung’s Aquabolt-XL design, and shares some performance data.  It can be found HERE.


Samsung’s Not the First PIM Maker

This is not at all the first Continue reading “Samsung’s Aquabolt-XL Processor-In-Memory (Part 2)”

Did Samsung Just Endorse YMTC’s Xtacking?

Closeup of Samsung graphic, showing illustration of wafer-bonded NANDDuring his December 15 IEDM keynote speech, Samsung Electronics Chairman Kinam Kim really surprised me.  He spoke favorably of the approach that YMTC is using to produce 3D NAND flash.

This approach, which YMTC named “Xtacking,” involves the use of two separate wafers to manufacture a 3D NAND chip.  The brief way to describe it is to say that Continue reading “Did Samsung Just Endorse YMTC’s Xtacking?”

Could Intel’s PowerVia Lower HBM Costs?

Photo of NVIDIA Ampere GPU with six HBM stacks at top & bottomIntel has recently announced a technology that the company calls PowerVia that could inadvertently help reduce the cost of HBM – high-bandwidth memory.

HBM is a stack of up to twelve DRAM chips that are interconnected using over one thousand TSVs – Through-Silicon Vias.  These are metal-filled holes etched right through the DRAM die to allow signals to move vertically through the chip.  It’s an alternative to more conventional wire bonding.

HBM sells for significantly more than Continue reading “Could Intel’s PowerVia Lower HBM Costs?”

NAND Flash’s Layers of Layers of Layers

Bonding Wires on Stacked NAND FlashThe Memory Guy has found that some people get confused about the terminology surrounding flash “Layers” and “Levels,” Sometimes confusing the two, and often misunderstanding what each one means.  This post is meant to be a low-level primer to address that confusion.

There are actually three places where such terminology is used: The number of chips in a package, the number of conductor/insulator pairs in 3D NAND, and the number of voltage levels stored on any single bit cell within the chip.  I will address them in that order.

CHIP STACKING: Since the 1990s Both NAND and NOR flash chip makers have been stacking chips within a single plastic package.  Originally this approach was used to reduce the size of thin flip phones like the Motorola Razr by stacking an SRAM chip on top of NOR flash, but soon afterwards NAND chips began to use the same approach to get incredible storage capacities into a single IC package or eMMC, or into a microSD card format.  What began as 2-die stacks became 4, then 8, and now 16 high.  This post’s photo illustrates an 8-high stack.

Since the height of a standard plastic package for a chip is smaller than a stack of 16 full-thickness dice the wafers had to be Continue reading “NAND Flash’s Layers of Layers of Layers”

Memsys: A New Memory Conference

1999 White HouseSince I am the Memory Guy I hate learning that I missed something new and cool in the world of memories, but somehow I was unaware of last week’s Memsys conference in Washington DC until a participant notified me on Saturday that his paper: “Reverse Engineering of DRAMs: Row Hammer with Crosshair,” had been given the the best paper award.

Upon looking at the Memsys website it looks like a very intriguing academic conference.  about sixty papers were presented in eight interesting sessions:

  • Issues in High Performance Computing
  • Nonvolatile Main Memories and DRAM Caches, Parts I & II
  • Hybrid Memory Cube and Alternative DRAM Channels
  • Thinking Outside the Box
  • Improving the DRAM Device Architecture
  • Issues and Interconnects for 2.5D and 3D Packaging
  • Some Amazingly Cool Physical Experiments

in addition to a few apparently-fascinating keynotes.

Fortunately, all of the papers are Continue reading “Memsys: A New Memory Conference”

Samsung’s Colossal 128GB DIMM

Samsung_128GB TSV RDIMMIn a November 25 press release Samsung introduced a 128GB DDR4 DIMM.  This is eight times the density of the largest broadly-available DIMM and rivals the full capacity of mainstream SSDs.

Naturally, the first question is: “How do they do that?”

To get all the chips into the DIMM format Samsung uses TSV interconnects on the DRAMs.  The module’s 36 DRAM packages each contain four 8Gb (1GB) chips, resulting in 144 DRAM chips squeezed into a standard DIMM format.  Each package also includes a data buffer chip, making the stack very closely resemble either the High-Bandwidth Memory (HBM) or the Hybrid Memory Cube (HMC).

Since these 36 packages (or worse, 144 DRAM chips) would overload the processor’s address bus, the DIMM uses an RDIMM protocol – the address and control pins are buffered on the DIMM before they reach the DRAM chips, cutting the processor bus loading by an order of magnitude or more.  RDIMMs are supported by certain server platforms.

The Memory Guy asked Samsung whether Continue reading “Samsung’s Colossal 128GB DIMM”

New Book: Vertical 3D Memory Technologies

Book: Vertical 3D Memory Technologies - Betty PrinceWiley has recently published a new book by Betty Prince titled Vertical 3D NAND Technologies that is one to consider if you want to bring yourself up to speed on recent research behind today’s and tomorrow’s 3D memory technologies.

For those who haven’t previously encountered Dr. Prince, she is the author of a number of key books covering memory design and holds memory patents written over her 30-year career in the field.

The book provides capsule summaries of over 360 papers and articles from scholarly journals on the subject of 3D memories, including DRAM, NAND flash, and stacked chips.

These papers are organized into Continue reading “New Book: Vertical 3D Memory Technologies”

SanDisk’s Amazing 512GB SD Card

SanDisk's 512GB SD CardSanDisk has introduced an SD Card with a whopping 512 gigabytes of storage.  Noting that SD Card capacities have increased by 1,000 times over the past ten years, from 512MB to 512GB, the company says that this product is aimed at professional HD videographers (who can justify its $800 price) allowing them to shoot Raw-format footage without shutting their cameras off, which could potentially allow them to miss a magic moment.

To The Memory Guy this represents an amazing piece of packaging technology.  Let’s see why:

In 2003 SanDisk’s 512MB card contained Continue reading “SanDisk’s Amazing 512GB SD Card”

Hybrid Memory Cube Making Progress

Conceptual Cutaway Drawing of the Hybrid Memory CubeOn Tuesday the HMC Consortium (that’s short for “Hybrid Memory Cube”) announced that members have agreed upon a specification.  The consortium has been moving rapidly, meeting its targets despite the revolutionary nature of the interface.

As a reminder, this technology stacks multiple DRAMs in a single package with a logic chip at the base of the stack that performs all the signalling to the rest of the system.  Signals between the DRAMs and logic chip use through-silicon vias (TSVs) as interconnections.  This allows the technology to deliver 15 times the performance of DDR3 at only 30% of the power consumption.  The Memory Guy first posted about the HMC in late 2011.

The consortium explains that the HMC interface already has 100 adopters, and that a few Continue reading “Hybrid Memory Cube Making Progress”

New Memory Bonding Technique Shows Promise

Spider Attaching Bonding Wires on Multi-Chip StacksIn a new cross-disciplinary effort, researchers have developed a novel approach to attach bonding wires to stacks of memory chips.  The new technique, being called a “breakthrough” by its developers, promises to allow chips to be stacked to several times their current 8-chip and 16-chip heights.

At issue is the challenge of precisely bonding wires a fraction of the diameter of a human hair over great distances without their inadvertently coming into contact with their neighbors to create a short circuit.  Such a short could destroy one or more of the chips in the stack, rendering the entire stack useless.  The mechanical means of attaching these wires, although highly sophisticated, still has significant issues, that limit the economics of higher stacks.

Researchers at the Berea University of Geology (BUG) in Berea, Kentucky, noticed that certain Continue reading “New Memory Bonding Technique Shows Promise”