This week both the Toshiba-Western Digital team and Samsung disclosed details of their 64-layer 3D NAND designs at the IEEE’s International Solid-State Circuits Conference (ISSCC). The Memory Guy thought that it would be interesting to compare these two companies’ 64-layer chips against each other and against the one that Micron presented at last year’s ISSCC.
Allow me to point out that it’s no easy feat to get to 64 layers. Not only must the process build all 64 layers (or actually pairs of layers plus some additional ones for control) across the entire 300mm wafer with high uniformity and no defects, but then holes must be etched through varying materials from the top to the bottom with absolutely parallel sides at aspect ratios of about 60:1, that is, the hole is 60 times as deep as it is wide. After this the fab must deposit uniform layers of material onto the sides of these skinny holes without any variation in thickness.
None of these processes have ever been used to build any other semiconductor — it’s all brand new. This is what makes 3D NAND so challenging, and it’s why the technology is already 3 years behind its original schedule.
It’s not easy to tell from the conference papers whether or not Continue reading “64-Layer 3D NAND Chips Revealed at ISSCC”