Videos Demystify MLC NAND Programming

TLC one-Pass WriteWhat really happens in NAND flash during an MLC, TLC, or QLC write?  Although there are lots of websites that explain that multilevel cells store four, or eight, or sixteen different voltage levels on a cell (for MLC, TLC, or QLC), they don’t spell out the process of putting those voltage levels onto the bit cell.

Fortunately, Vic Ye, Manager, NAND Flash Characterization at Yeestor Microelectronics Co., Ltd. in Shenzhen, China presented the programming process in a series of short videos at the Flash Memory Summit last August.  The Memory Guy was fortunate enough to attend his presentation.  Yeestor is a fabless semiconductor manufacturer that manufactures flash storage controllers for SSDs (PCIe & SATA) and flash cards (SD, UFS, eMMC, etc.)

Mr. Ye later gave me permission to share his videos and these are the foundation of this post.  They’re brief (13 seconds to 1:10) so they won’t take much time to review.  The videos were a part of his slide presentation titled: A Graphical Journey into 3D NAND Program Operations that can be downloaded from The Flash Memory Summit website by clicking the presentation title above and entering your e-mail address.

A multilevel flash bit cell has Continue reading “Videos Demystify MLC NAND Programming”

How 3D NAND Shrinks ECC Requirements

Bit Errors vs. ProcessError Correction Codes, ECC, are not only important to today’s NAND flash market, but they have been a cause of concern to NAND users for a number of years.  The Memory Guy has been intending for some time to write a low-level primer on ECC, and I am finally getting it done!

Why is ECC necessary on NAND flash, yet it’s not used for other memory technologies?  The simple answer is that NAND’s purpose is to be the absolute cheapest memory on the market, and one way to achieve the lowest-possible cost is to relax the standards for data integrity — to allow bit errors every so often.  This technique has been used for a long time in both communications channels and in hard disk drives.  Data communication systems can transfer more data using less bandwidth and a weaker signal over longer distances if they use error correction to restore distorted data.  Hard disk drives can pack more bits onto a platter if the bits don’t all have to work right.  These markets (and probably certain others) have invested a lot of money in ECC research and development, and as a result ECC today  is a very well-developed science.

Denali Software published a nice Continue reading “How 3D NAND Shrinks ECC Requirements”

Finally! Samsung’s 3-Bit V-NAND Arrives

3-bit V-NANDSamsung has finally introduced the 3-bit 3D NAND chip it revealed at last August’s Flash Memory Summit.  This announcement was made in the form of an SSD announcement.

For those who were unable to attend the Flash Memory Summit, Samsung’s Senior VP of Memory R&D, Bob Brennan, announced in his keynote speech that a 3D 32-layer V-NAND, a chip that would achieve twice the chip density of planar NAND, was entering production and that SSDs would follow in a month.  Now, two months later, Samsung has announced those SSDs.

This week’s release reiterates Continue reading “Finally! Samsung’s 3-Bit V-NAND Arrives”