WD

Micron and Intel to End NAND Flash JV

Jim Handy in the IMFT fabIt came as a surprise to the Memory Guy on Monday to receive a press release from Micron indicating that Intel and Micron had decided to end their NAND flash partnership.

This agreement, which was begun in 2006, helped the two companies to aggressively ramp into the NAND flash market by combining their resources.  NAND flash makers (as well as DRAM makers) need to make very substantial capital investments to participate in the market, and that’s not easy for a new entrant.  Micron at that time was a very small NAND flash maker, and Intel wasn’t involved in the NAND flash market at all, so neither was in a position to succeed.  By combining their resources the companies were able to become important contributors to the market.

The agreement initially appeared to be modeled after the very successful joint venture that Toshiba and SanDisk enjoyed.  Each company would contribute half of the JV’s capital investment, and the same designs would be used to make both companies’ chips.

Over time Intel found itself in a familiar Continue reading

Did Toshiba REALLY Lose 3-6 Weeks’ Production?

Toshiba's Fab 5 in YokkaichiYesterday The Memory Guy learned of an amazing article in DigiTimes about a 3-6 week shutdown at Toshiba’s Yokkaichi NAND flash fab line.  According to the story Toshiba’s production was shut down for 3-6 weeks accounting for a production loss of 100,000 wafers.  Another article in PC Games N converted that to lost bytes and came up with the number 400,000 terabytes.

Some quick math shows the errors in both of these articles.

First of all, the wafer stoppage.  The Toshiba/SanDisk Yokkaichi Joint Venture wafer fabrication complex processes a little over 2 million wafers per year.  Divide that by 52 weeks and you find that’s about 40,000 wafers per week, so 100,000 wafers would be 2.5 weeks’ output, not 3-6 weeks.

The number of bytes that PC Games N published takes a little more math.  According to TechInsights Toshiba’s 15nm 128Gb MLC chip has an area of 99mm².  That gets you a little over 10TB/wafer.  The company’s 48-layer TLC 256Gb part should produce about twice that.  Yet, if you divide PC Games’ Continue reading