3D

Extending the Write/Erase Lifetime of Phase Change Memory: Part 4 – The Possible Implications for 3D XPoint and Optane

Ron NealeThis is Part 4 of a series contributed by Ron Neale to the Memory Guy blog, in which Ron looks into some important detailed analytical work by a joint team at IBM and Yale University which might point to the way of achieving improved PCM endurance.


I want, in this final part, to focus on its possible implications for commercial PCM products.

When Intel and Micron first introduced 3D XPoint Memory the companies claimed that it would be 1,000 times as fast as flash memory with 1,000 times the endurance at ten times the density of standard memory (meaning DRAM).  Now that Intel’s XPoint-based Optane SSDs have been released and their specifications are public we can estimate what the technology’s endurance might be.

The table below, explained in another Memory Guy blog post, gives estimates of best-case endurance for the cells in the XPoint memory in Optane SSDs.  In other words, with a sophisticated enough controller, good DRAM buffering, and overprovisioning, all of which are techniques commonly used to extend the life of the media in a NAND flash SSD, the cell lifetime could be significantly lower than that shown in the last column of the table and the SSD would still provide the specified endurance.  (These techniques are explained in detail in an SSD Guy blog post series for anyone who is interested in understanding them.)

As the calculated Continue reading

How Samsung Will Improve 3D NAND Costs

Samsung's New Stairstep Etch iOne of the most intriguing revelations during the Flash Memory Summit two weeks ago was Samsung’s new approach to stairstep etch in 3D NAND.  This was one of numerous innovations the company’s  EVP of Flash Products & Technologies, Kye Hyun (KH) Kyung, shared during Samsung’s Tuesday Morning keynote presentation.

The Memory Guy would point readers to the pdf of Samsung’s presentation on the Flash Memory Summit website, but it isn’t there, and it’s unlikely to ever be posted there.  Samsung seems to have a policy that prohibits sharing such presentations.

Although I was unable to get a copy of the drawing that the keynoter used, I have tried to re-create it using, of all things, Excel!  The result is the graphic for this blog post.  The only thing I was unable to easily recreate was the different colors representing the layers of the 3D NAND.  You’ll need to use your imagination and envision layers of two colors, with all the surfaces exposed on the top being the same color, but at different layers of a 64-layer structure.

Today’s common approach to 3D NAND’s stairstep is to etch a simple step pattern in one dimension, which I illustrated in an early 3D NAND blog post four years ago.  This is a challenging Continue reading

Intel Developer Forum – Not Much 3D XPoint Progress

IDF16 FaceAfter a big 3D XPoint launch one year ago almost anyone would expect for Intel to have had a lot of exciting new news to share about the technology at last week’s Intel Developer Forum (IDF).  Those who were watching for that, though, were in for a disappointment.

For readers who don’t remember, Intel and its partner, chipmaker Micron Technology, announced a new memory layer in July 2015 that would enable in-memory databases to expand well beyond the constraints posed by standard DRAM memory. The pair also boasted the additional benefit of being nonvolatile or persistent – data would not be lost if the power failed.  This technology promised to open new horizons in the world of computing.

Intel devoted a lot of effort to promotion and education during the following month’s IDF, and even demonstrated a prototype 3D XPoint SSD that performed seven to eight times as fast as Intel’s highest-performance existing NAND flash SSD – the DC S3700.  Although a DIMM form factor was disclosed, no prototypes were on hand.  Both were given the brand name “Optane”.

Moving forward one year to the 2016 IDF (the source of this post’s odd graphic), The Memory Guy was shown Continue reading

Four New Players Join 3D NAND Market

Micron & Intel's 3D NAND Die PhotoThe following is excerpted from an Objective Analysis Alert sent to our clients on March 26: On March 25 SanDisk and Toshiba announced sampling of their 3D NAND flash technology, a 128Gb (gigabit) 48-layer second-generation product based on the BiCS technology that the companies pioneered in 2007.  Pilot production will begin in the second half of 2015 with meaningful production targeted for 2016. This release was issued at the same time that Intel and Micron were briefing the press and analysts for their March 26 announcement of their own 3D NAND offering (pictured), which is currently sampling with select customers, and is to enter full production by year-end.  The Micron-Intel chip is a 32-layer 256Gb device, which the companies proudly point out is the densest flash chip in the industry.

Similarities and Differences

These two joint ventures (Intel-Micron and SanDisk-Toshiba) are taking very different Continue reading

New Book: Vertical 3D Memory Technologies

Book: Vertical 3D Memory Technologies - Betty PrinceWiley has recently published a new book by Betty Prince titled Vertical 3D NAND Technologies that is one to consider if you want to bring yourself up to speed on recent research behind today’s and tomorrow’s 3D memory technologies.

For those who haven’t previously encountered Dr. Prince, she is the author of a number of key books covering memory design and holds memory patents written over her 30-year career in the field.

The book provides capsule summaries of over 360 papers and articles from scholarly journals on the subject of 3D memories, including DRAM, NAND flash, and stacked chips.

These papers are organized into Continue reading

Applied’s Take on 3D NAND

Applied Materials expects for 3D NAND to grow the etch & CVD markets by 50%Early this month I was invited to participate in Applied Materials’ (AMAT) Analyst Day.  The sessions were rich in data covering the markets that would profit the company over the next few years.

Naturally, The Memory Guy fixated on those presentations that dealt with memory.  When it came to the upcoming transition to 3D NAND, AMAT had a lot to say.

A later post will explain what 3D NAND actually is.  Suffice it to say that today’s approach to making NAND flash has nearly reached its limit, and the approach that manufacturers plan to use in the future involves making NAND strings that stand on their ends.  This has phenomenal implications on Continue reading