Energy Conversion Devices

Original PCM Article from 1970

For a number of years The Memory Guy has wanted to find a copy of the 1970 article, published in Electronics magazine, in which Intel’s Gordon Moore and two authors from Energy Conversion Devices, Ron Neale and D.L. Nelson, showed that PCM could be used as a memory device.  After all, this is the technology behind Micron & Intel’s 3D XPoint Memory.

The cover of the magazine (this post’s graphic) has been used by Intel to promote its PCM or PRAM chips before those were spun off to Numonyx (now a part of Micron).  Intel, though, didn’t appear to have anything to share but the cover photo.

Electronics magazine went out of business in 1995, and that makes the task of finding archive copies more challenging.

It recently occurred to me that the best person to ask might be the article’s lead author, Ron Neale, who is a regular contributor to EE Times.

I was astounded to discover that Continue reading

Alternative Memory Technologies Patiently Wait For Market to Explode

Cross Section of a PCM Bit CellLane Mason of Objective Analysis recently shared with The Memory Guy an article he wrote for the 4 April 2007 Denali Memory Report covering Phase Change Memory (PCM or PRAM.)  It looked like something big was about to happen with the technology: PCM looked nearly ready to enter production.

The article included an excerpt of an EE Times interview with Micron’s CEO, the late Steve Appleton, in which Appleton stated that PCM advocates threatened to take over the memory market in 2000.

Here it is 2012, and PCM represents little more than a drop in the bucket when it comes to memory sales, although Continue reading

Micron PCM Enters Mass Production

Cover of Electronics Magazine, 28 September, 1970, with Intel PCM articleAfter years of prototyping Micron Technology claims to be the first to introduce production volumes of Phase-Change Memory, or PCM.  This memory, also known as PRAM, has long been positioned as a contender to replace flash once flash reaches its scaling limit.  Rather than use electrons to store a bit, PCM uses a type of glass that is conductive when in a crystalline state and resistive when amorphous, two states that are relatively easy to control.  The size of the bits can shrink to a very small dimensions, allowing PCM to scale into the single-digit number of nanometers, which most folks today believe to be beyond the realm of flash.

This product began its life at Intel, then followed the Numonyx spin-off, and was taken over by Micron when it acquired Numonyx.  In fact, Intel got into PCM very early on – this post’s graphic is the cover of an Electronics Magazine from September 1970 with an Intel story, written by Gordon Moore, telling about a 128-bit PCM research chip.

So far only three companies have produced samples Continue reading