96-Layer NAND in Perspective: WDC Video

WDC 96-Layer NAND Model with The Memory GuyIt’s pretty easy to go from talking about the earliest 24-layer 3D NAND to talking about the next-generation 32-layer 3D NAND, and then to progress through 48, 64, and more layers, but the amazing scale of a 96-layer part doesn’t really sink in when you just talk about numbers.

That’s why The Memory Guy was so charmed when Western Digital Corp. (WDC) invited me in for a briefing that gave me a more solid idea of how significant of a number 96 really is.  The company brought along a plastic model that replicated the structure of its 96-layer BiCS NAND chip using clear plastic which was dramatically lighted from the inside.

WDC’s model was constructed using standard plastic sheeting, probably 1/8″ thick (~3mm), one sheet to represent the conductive polysilicon and one to represent the insulating silicon dioxide for each layer.  Naturally, there are more than 96 layers in 96-layer NAND since there are source select transistors at the bottom and drain select transistors at the top.  This adds a little bit to the layer count.

Another layer in the middle of Continue reading “96-Layer NAND in Perspective: WDC Video”

Flash Memory Summit: Limitless Layers of 3D NAND

SanDisk Technology Roadmap 2014The single most interesting thing I learned at the 2015 Flash Memory Summit was that 3D NAND doesn’t have a natural limit, after which some other memory type will need to be adopted.

For years SanDisk has been presenting a memory roadmap (this post’s graphic is one rendition) that anticipates a move to ReRAM after 3D NAND has run through its natural life, which was expected to be as little as three generations.  This has been backed by the idea that a 3D NAND stack would only be able to reach a certain number of layers before it would encounter difficulties caused by the need to etch a high aspect ratio hole through an increasing number of layers.

The aspect ratio issue is not hard to understand: Let’s assume that the hole in a 24-layer stack has an aspect ratio of 40:1, then a 32-layer hole would have an aspect ratio of about 50:1, and a 64-layer stack would be something close to 100:1.  Today’s technology starts to have trouble etching holes with an aspect ratio higher than 60:1.

These high aspect ratios were thought to be the limiting factor that would prevent 3D NAND from continuing for more than three generations.  3D NAND could only have as many layers as the aspect ratio could support.

On a panel that I moderated at this year’s Flash Memory Summit one panelist, Dr. Myoung Kwan Cho of SK hynix, explained that although there is a limit Continue reading “Flash Memory Summit: Limitless Layers of 3D NAND”